recherche parmi les cours, les corrigés, méthodo, conseils
 
mon CyberProfje pose une questionje demande à corriger un exerciceje souhaite la correction d'un devoir
Mathematiques > sujets expliqués - correction

Terms : dérivation ; nombres complexes ; fonctions .

 
exercice n°1:
>question préliminaire
>>pour tout entier naturel n tel que n supérieur ou égal à 1, on appelle "factorielle n" le nombre entier : n! = 1*2*3*...*n (produit des n entiers allant de 1 à n)
Compléter : 1! = ... 2! = ... 3! = ... 4! = ...
>> par convention , on pose 0! = 1

>soit la fonction f:x --> 1/(x-1) définie sur x différent de 1
1/ calculer f' (x) , f'' (x) et f''' (x) pour x différent de 1
2/ déterminer f^n de (x) pour x différent de 1 et n appartient à N*
(pour la question 2/, on fera un raisonnement par récurrence, et on utilisera la défintion donnée ci-dessus)

exercice n°2:
à tout nombre complexe z distinct de -1, on associe z' = (1-z)/(1+z)
1/ démontrer que, si |z| = 1 alors z' est imaginaire pur.
2/ la réciproque est-elle vraie ?
3/ interpréter géométriquement les résultats précédents, en utilisant les points A, B, M d'affixes respectives 1, -1, z.
4/ dans cette question, on pose: |z| = 1 et arg(z) = théta (théta appartient à ]-pi ; pi[ )
calculer |z'| en fonction de théta/2 ( on pourra utiliser une factorisation par e^i*théta/2, mais d'autres méthodes sont possibles ).

exercice n°3:
le plan complexe est rapporté à un repère orthonormal (O,u,v)
on considère le point A d'affixe 1 et , pour tout théta appartenant à [0;2pi[ , le point M d'affixe z=e^i*théta.
on désigne par P le point d'affixe 1+z et par Q le point d'affixe z² .
1/ à partir du point M, donner une construction géométrique du point P et du point Q . les points O,A,M,P et Q seront placés sur une même figure .
2/déterminer l'ensemble des points P, pour théta appartenant à [0;2pi[. tracer cet ensemble sur la figure.
3/ soit S le point d'affixe 1+z+z² où z est toujours l'affixe de M. construire S en justifiant la construction .
4/ dans le cas où S est différent de O, tracer la droite (OS). quelle conjecture apparaît, relativement au point M ?
démontrer que le nombre (1+z+z²)/z est réel, quel que soit théta appartenant à [0;2pi[. conclure sur la conjecture précédente.

exercice n°4:
soit la fonction f définie sur R par f(x) = (x^3-4)/(x²+1) (figure : unité 1 cm)

1/ étude d'une fonction auxilliaire:
soit g la fonction définie sur R par g(x)=x^3+3x+8
a/ déterminer g '. donner le tableau de variation de g.
b/ démontrer que l'équation g(x)=0 admet une solution unique que l'on notera alpha.
déterminer un encadrement de alpha d'amplitude 0,1.
c/ en déduire le signe de g(x) suivant les valeurs de x

2/ étude de f:
a/ déterminer f'. étudier le sens de variation de f.
b/ déterminer lim f(x) quand x tend vers +l'infini et quand x tend vers -l'infini.
donner le tableau de variation de f.

3/
a/ démontrer qu'il existe 4 réels a, b, c, d tels que: f(x)=ax+b+(cx+d)/(x²+1) pour tout réel x.
b/ en déduire que la courbe représentative C de f admet une asymptote oblique nommée Delta.
c/ étudier la position de C par rapport à Delta.

4/ déterminer les points de C admettant une tangente parallèle à Delta.

5/
a/ vérifier: f(x)=(3/2)alpha
b/ en déduire un encadrement de f(x) d'amplitude 0,2

6/ tracer C, Delta en plaçant les points trouvés dans les questions précédentes, ainsi que les points de C à tangente horizontale.
placer aussi les points I, J, K de C d'abscisses respectives 1, 2, -1, avec leurs tangentes.

PS: je tiens à vous remercier par avance de l'aide que vous m'apporterez en corrigeant ce devoir.
Nicolas  
 
 

...

Connectez-vous pour consulter les réponses du CyberProf

Portails

 . Collège
 . Lycée
 . Fac (DEUG)
 . Classes préparatoires - CPGE
 . BTS
 . DUT
 . Fac (> DEUG)
 . Ecoles (> BAC+2)

parents d'élèves :  nos conseils

Qu'est-ce que Cyberprofs.com ?

Derniers devoirs traités

 . Urgent dm a corriger scratch
 . Merci de corriger ce dm qui est à rendre lundi prochain
 . Intégral
 . Mathematiques prepa
 . Maths prepa spé
 . Maths prepa spé
 . Maths
 . Algebre lineaire 1
 . Algebre lineaire 3
 . Algebre lineaire 2
 . Equations
 . Algebre lineaire
 . Optimisation fonctions
 . Maths niveau licence 3 ou prepa
 . Optimisation / fonction