recherche parmi les cours, les corrigés, méthodo, conseils
 
mon CyberProfje pose une questionje demande à corriger un exerciceje souhaite la correction d'un devoir
Mathematiques > sujets expliqués - Question simple

Exponentielle(suite 2)

 
Partie B
Dans cette seconde partie, on se propose de déterminer l’ensemble E de toutes las fonctions f , dérivables sur R et vérifiant pour tous réels x et y :
f(x+y)+x+y=[f(x)+x]|[f(y)+y] (I)
1)a-En posant x=y=X/2, démontrer que:
Pr tt f dans E et pr tt réel X, f(X)+X>ou égal à 0
b-Démontrer que si f appartient à E, alors nécessairement, f(0)=0 ou f(0)=1.
2)Déterminer la fct f lorsque f(0)=0
3)a- Démontrer que s’il existe réel x0 tel que f(x0)+x0=0 alors:
Pr tt reel x, f(x)+x=0
(on pourra par exemple remarquer que x=(x-x0)+x0 et utiliser la relation (I))
b-En déduire que si f(0)=1 alors pr tt reel x: f(x)+x>0.
c-On suppose que f(0)=1 et on posef(1)+1=a
Démontrer par récurrence que: pr tt n dans N, f(n)+n=a^n (a^0=1)
En déduire qe pr tt n dans Z: f(n)=a^n-n
4)On pose pr tt f dans E, f ‘(0)=+1=k.
Soit c un réel donne quelconque. En dérivant par rapport à x les deux membres de la relation:
f(x+c)+x+c=[f(x)+x][f(c)+c], démontrer que pr tt reel c, f’(c)+1=k[f(c)+c]
5)La question 4) prouve donc que toute fct f de E vérifie la relation (II): pr tt reel x, f’(x)+1=k[f(x)+x]
Avec k=f’(0)+1.
On pose pr tt f de E et pr tt reel x:
g(x)=f(x)+x.
a-Exprimer g’(x) en fonction de k et g(x).
b-Trouver ttes ls fnctions g vérifiant cette dernière relation et en déduire les fonctions f solutions de (I).

Re bonjour!
Je voudrais de l'aide pour la question 4).Apres avoir dérivé, je n'arrive pas au résultat..  
 
 

...

Connectez-vous pour consulter les réponses du CyberProf

Portails

 . Collège
 . Lycée
 . Fac (DEUG)
 . Classes préparatoires - CPGE
 . BTS
 . DUT
 . Fac (> DEUG)
 . Ecoles (> BAC+2)

parents d'élèves :  nos conseils

Qu'est-ce que Cyberprofs.com ?

Derniers devoirs traités

 . Urgent dm a corriger scratch
 . Merci de corriger ce dm qui est à rendre lundi prochain
 . Intégral
 . Mathematiques prepa
 . Maths prepa spé
 . Maths prepa spé
 . Maths
 . Algebre lineaire 1
 . Algebre lineaire 3
 . Algebre lineaire 2
 . Equations
 . Algebre lineaire
 . Optimisation fonctions
 . Maths niveau licence 3 ou prepa
 . Optimisation / fonction