recherche parmi les cours, les corrigés, méthodo, conseils
 
mon CyberProfje pose une questionje demande à corriger un exerciceje souhaite la correction d'un devoir
Mathematiques > sujets expliqués - Question simple

Spécialité

 
Dans le plan orienté muni du repère ortho-
norme direct (0,u,v) on considère deux vecteurs w et
w' tels que (u,w) = (v,w') =pi/6
Pour tout point M du plan, on mène la droite Dm diri-
gée par le vecteur w et la droite D'm dirigée par le vecteur w'.
La droite Dm coupe l'axe des abscisses en un point m et
la droite D'm coupe l'axe des ordonnées en un point p.
On appelle M' le point qui a même abscisse que m et
même ordonnée que p.
Le but de l'exercice est de déterminer la nature de la
transformation qui à tout point M du plan associe ce
point M'.
1. Figures
a. Construire le point M' lorsque M est un point du
plan n'appartenant pas aux axes du repère.
b. Effectuer sur une autre figure la construction quand
M est un point M1, de l'axe des abscisses autre que 0
et quand M est un point M2, de l'axe des ordonnées
autre que 0.
c. Quelle est l'image de 0 ?
2. Étude géométrique
M étant un point quelconque du plan, montrer que :
a. Les points 0, m, p, M et M' sont sur un même cercle
(on étudiera le cas général puis on vérifiera que le
résultat est encore vrai si M appartient à l'un des axes).
b. Le triangle OMM' est rectangle en M.
c.angle entre(OM,ÔM')=pi/3.
d.OM'=20M.
e. En déduire que f est une similitude directe dont on
précisera les éléments caractéristiques.
3. Solution analytique
Le point M ayant pour coordonnées (x;y), déter-
miner les coordonnées de m et p en fonction de x et y
puis en déduire que M' a pour coordonnées (x' ; y'}avec:
x'=x-y*racine de 3
y' =x*racine de 3 +y
a. Soit z=x+iy et z'=x'+iy' les affixes respectives
de M et M'. Démontrer que z' = az où a est un nom-
bre complexe à déterminer.
h. Retrouver les résultats trouvés à la question 2e.

Bonjour!
Je voudrais quelques pistes (interessantes!)pour la question 2.Merci d'avance!  
 
 

...

Connectez-vous pour consulter les réponses du CyberProf

Portails

 . Collège
 . Lycée
 . Fac (DEUG)
 . Classes préparatoires - CPGE
 . BTS
 . DUT
 . Fac (> DEUG)
 . Ecoles (> BAC+2)

parents d'élèves :  nos conseils

Qu'est-ce que Cyberprofs.com ?

Derniers devoirs traités

 . Urgent dm a corriger scratch
 . Merci de corriger ce dm qui est à rendre lundi prochain
 . Intégral
 . Mathematiques prepa
 . Maths prepa spé
 . Maths prepa spé
 . Maths
 . Algebre lineaire 1
 . Algebre lineaire 3
 . Algebre lineaire 2
 . Equations
 . Algebre lineaire
 . Optimisation fonctions
 . Maths niveau licence 3 ou prepa
 . Optimisation / fonction