nos idées, par exemple de mathématiques, d'astronomie, de physique, sont vraies en deux sens. Elles sont vraies par le succès ; elles donnent puissance dans ce monde des apparences. Elles nous y font maîtres, soit dans l'art d'annoncer, soit dans l'art de modifier selon nos besoins ces redoutables ombres au milieu desquelles nous sommes jetés. Mais, si l'on a bien compris par quels chemins se fait le détour mathématique, il s"en faut de beaucoup que ce rapport à l'objet soit la règle suffisante du bien penser. La preuve selon Euclide n'est jamais d'expérience ; elle ne veut point l'être. Ce qui fait notre géométrie, notre arithmétique, notre analyse, ce n'est pas premièrement qu'elles s'accordent avec l'expérience, mais c'est que notre esprit s'y accorde avec lui-même, selon cet ordre du simple au complexe, qui veut que les premières définitions, toujours maintenues, commandent toute la suite de nos pensées. Et c'est ce qui étonne d'abord le disciple, que ce qui est le premier à comprendre ne soit jamais le plus urgent ni le plus avantageux. L'expérience avait fait découvrir ce qu'il faut de calcul et de géométrie pour vivre, bien avant que la réflexion se fût mise en quête de ces preuves subtiles qui refusent le plus possible l'expérience, et mettent en lumière cet ordre selon l'esprit qui veut se suffire à lui-même. Il faut arriver à dire que ce genre de recherche ve nise point d'abord à cette vérité que le monde confirme, mais à une vérité plus pure, toute d'esprit, ou qui s'efforce d'être telle, et qui dépend seulement du bien penser. Alain |
|||||
... |
Connectez-vous pour consulter les réponses du CyberProf